Mein neues Werkzeug: Claude Code

Aufgabe stellen, loslassen, Ergebnis priifen

Carsten Grohmann

Unix-Stammtisch Dresden

7. Januar 2026

Carsten Grohmann Mein neues Werkzeug: Claude Code

Agenda

Agenda

Carsten Grohmann Mein neues Werkzeug: Claude Code

Agenda

Agenda

Einfihrung und Grundlagen
Arbeiten mit Claude Code
Best Practices und Sicherheit
Live-Demos
Praxiserfahrungen

Fazit und Ausblick

Abschluss

NooakowhH

Carsten Grohmann Mein neues Werkzeug: Claude Code

Einfiihrung und Grundlagen

Warum Claude Code?

Was ist Claude Code?

Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzu imits Claude Code Pro (20$/Monat)

Einfilhrung und Grundlagen

Carsten G Mein

es Werkzeug: Claude Code

Einfiihrung und Grundlagen

Warum Claude Code?
Was ist Claude Code?
undprinzip: Der autonome Entwicklungszyklus
imits Claude Code Pro (20$/NM

Warum Claude Code?

» Autonome Problemlésung
> Kontextbewusstes Arbeiten
» Praktische Integration

» Transparenz und Effizienz
P Lernunterstiitzung

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
LEinﬂlhrung und Grundlagen
LWarum Claude Code?
L Warum Claude Code?

Warum Claude Code?

= Autonome Problemldsung:
— Komplexe Aufgaben selbststandig in Schritte zerlegen
— Code schreiben, testen, debuggen und iterativ verbessern
= Kontextbewusstes Arbeiten
— Codebase durchsuchen und verstehen, Architekturmuster
erkennen
— Losungen passend zum bestehenden Code
= Praktische Integration
— Git-Integration, Build-Systeme, Tests und Entwicklungstools
— Web-Recherche und Dokumentation
= Transparenz und Effizienz
— Jeden Schritt nachvollziehbar
— Automatisiert repetitive Aufgaben
= Lernunterstiitzung
— Zeigt Best Practices und alternative Ansatze
— Hilft beim Verstehen unbekannter Codebases

Einfiihrung und Grundlagen
Warum Claude Code?

Was ist Claude Code?

Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Woas ist Claude Code?

» Offizielles CLI-Tool von Anthropic fiir Claude Al

» Terminalbasiertes Entwicklungswerkzeug

» Direkter Zugriff auf Codebase, Dateisystem und Build-Tools
» Lauft mit Nutzerrechten (keine Isolierung)

» Verfiigbar fiir Linux, macOS und Windows

Paradigmenwechsel:

» Nicht: “Generiere Code fiir X"
» Sondern: “Analysiere Codebase, plane Anderung,
implementiere, teste”

Carsten Grohmann Mein neues Werkzeug: Claude Code

Einfiihrung und Grundlagen
Narum Claude Code?
s ist Claude Code?

Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Das Grundprinzip: Der autonome Entwicklungszyklus

Aufgabe
‘formulieren }—-{ Verstehen }—-{ Planen ‘

Umsetzen

Validieren

Wichtig: Tests und hohe Testabdeckung sind essenziell.

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
LEinﬂlhrung und Grundlagen
Das Grundprinzip: Der autonome Entwicklungszyklus
Das Grundprinzip: Der autonome
Entwicklungszyklus

= Eigenstandige Arbeit nach Aufgabenstellung
= Autonome Umsetzung bis zum getesteten Ergebnis
= Tests und Testabdeckung sind kritisch fiir Erfolg

Einfiihrung und Grundlagen

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus

Nutzungslimits Claude Code Pro (20$/Monat)

Nutzungslimits Claude Code Pro (20$/Monat)

Sitzungslimit:

» ~10-40 Prompts bei Claude Code (45 Nachrichten bei claude.ai)
» Gilt gemeinsam (ber alle Plattformen (Web, Desktop, Code)
» Ungenutzte Token verfallen nicht

» Reset 5 Stunden nach Session-Start

Wochenlimit:

» Offiziell: 40-80 Stunden Sonnet 4 pro Woche

» Praxis: 10-20 Stunden (ca. 2-3h pro Arbeitstag)

» Ungenutzte Token verfallen

» Stark variabel je nach Codebase-GroBe und Auto-Accept Mode

Carsten Grohmann Mein neues Werkzeug: Claude Code

Einfiihrung und Grundlagen
Warum Claude Code?
st Claude Code?
Grundprinzip: Der autonome Entwicklungszyklus

Nutzungslimits Claude Code Pro (20$/Monat)

Wichtig:

» Fehlende Transparenz bei den Messungen
» Anderungen ohne Ankiindigung

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Arbeiten mit Claude Code

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Die drei Modi

Drei Betriebsmodi fiir unterschiedliche Arbeitsweisen

» Ask-Modus - Gezieltes Nachfragen und Klaren
» Plan-Modus - Strukturierte Planung vor der Implementierung
» Automatic-Modus - Autonome Umsetzung

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Ask-Modus: Gezieltes Nachfragen und Klaren

Wofiir:

» Verstandnisfragen zur Codebase
» Erklarungen zu bestehendem Code
» Schnelle Analysen ohne Anderungen

Beispiele:

> Wo werden Fehler vom Client behandelt?
-+ Claude analysiert Code und zeigt: "In src/services/process.ts:712"

> Welche regulédren Ausdriicke werden in diesem Projekt verwendet?
-+ Claude listet alle Regex-Patterns mit Fundstellen auf

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Typische Anwendungsfille:

» Onboarding in fremde Codebases

» Code-Reviews verstehen

P Architekturentscheidungen nachvollziehen
> “Wie funktioniert Feature X7"

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L Arbeiten mit Claude Code
L Die drei Modi

= Schnelle Codebase-Analyse in Sekunden
= Prazise Antworten ohne Anderungen
= Ideal fiir Onboarding und Verstandnisfragen

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Plan-Modus: Strukturierte Planung vor Implementierung

Wofiir:

» Komplexe Anderungen mit mehreren Schritten
» Unsicherheit (iber beste Herangehensweise
» Klarung von Anforderungen vor Umsetzung

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Workflow:

1. Aufgabe beschreiben
2. Claude analysiert Codebase
3. Claude erstellt detaillierten Plan mit:
» Betroffene Dateien
» Einzelne Schritte
> Mogliche Risiken
» Alternative Ansatze
4. Plan priifen und freigeben
5. Umsetzung starten

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Praxisbeispiel:
Plan: Unittest — Pytest Migration
Claude analysiert:

> test.py (1,6k Zeilen mit unittest)
» Makefile (Test-Targets)
» Dependencies in requirements.txt

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Claude schlagt vor:

Test-Klassen zu pytest-Funktionen konvertieren
setUp/tearDown durch Fixtures ersetzen
self.assert* durch assert ersetzen
Makefile anpassen

Dependencies aktualisieren

Tests ausfiihren und validieren

I

— Freigabe — Autonome Implementierung

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L Arbeiten mit Claude Code
L Die drei Modi

= Wertvoll bei komplexen Refactorings
= Zeigt alle Implikationen vor Code-Anderungen
= Verhindert fehlerhafte Implementierungen durch Vorausplanung

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Automatic-Modus: Autonome Umsetzung

Wofiir:

> Klare, gut definierte Aufgaben
» Anderungen mit vorhandenem Test-Suite
» Routine-Refactorings

Merkmale:

» Claude arbeitet selbststandig durch Todo-Liste
» Fiihrt Tests automatisch aus
P Korrigiert Fehler eigenstandig
» Stoppt bei unklaren Situationen und fragt nach

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Beispiel-Ablauf:

Prompt: Check regular expressions and suggest
improvements

Mustertext: "[473206] 504 473206 T7572670"
Hinweis: Der RE soll die PID aus dem ersten Feld extrahieren
Claude Code:

Scannt REs, identifiziert: "\ [(?P<pid>[\d]+)\]
Andert zu “\ [(?P<pid>\s*\d+)\] und testet

Tests fehlgeschlagen

Analysiert Fehler, korrigiert zu \ [\s* (?P<pid>\d+)\]
Erneute Tests erfolgreich, abgeschlossen

Carsten Grohmann Mein neues Werkzeug: Claude Code

O W

2026-01-07

Mein neues Werkzeug: Claude Code
L Arbeiten mit Claude Code
L Die drei Modi

= Beispiel fiir eine autonome Anderung aus einer gréBeren Aufgabe
= inkl. erster fehlerhafter Anderung mit anschlieBenden Test und
Korrektur

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Grenzen der Autonomie:

» Bei Unsicherheiten: Claude fragt nach (Multiple Choice Dialog)
» Bei fehlenden Informationen: Claude stoppt und bittet um Input
» Bei kritischen Operationen: Claude warnt vorher

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L Arbeiten mit Claude Code
L Die drei Modi

= Kernelement: Aufgabe stellen, loslassen, Ergebnis priifen
= Autonomie mit Kontrolle: Claude stoppt bei Unsicherheiten
= Automatische Fehlerkorrektur und Test-Validierung

Was passiert im Hintergrund:

= Read: Dateien lesen und analysieren

= Grep/Glob: Code durchsuchen

= Edit: Prazise Anderungen vornehmen
= Bash: Tests, Build-Prozesse ausfiihren
= TodoWrite: Fortschritt tracken

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Wann welcher Modus? - Entscheidungshilfe

Situation Modus Grund
Analyse/Erklarung Ask Keine Anderung
GroBes Refactoring Plan — Auto Viele Dateien
Einfache Anderung Automatic Klar definiert
Performance Plan Mehrere Ansatze
Framework-Migration Plan — Auto GroB, strukturiert
Bugfix (mit Tests) Automatic Klein, testbar
Feature-Evaluierung Plan Diskussionsbedarf

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L Arbeiten mit Claude Code
LDie drei Modi
LWann welcher Modus? - Entscheidungshilfe

= Modi sind kombinierbar
= Typischer Workflow: Ask — Plan — Automatic
= Modiwechsel je nach Aufgabenphase

Wann welcher Modus? - Entscheidungshilfe

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Konfigurationsebenen und -verzeichnisse

» ~/.claude/: Globale Konfiguration

> Gilt fur alle Claude Code Sitzungen

» Personliche Praferenzen, Code-Stil, Review-Standards

» Beispiel: ~/.claude/CLAUDE.md mit Coding-Richtlinien
» ./.claude/: Projektspezifische Konfiguration

» Nur fir aktuelles Projektverzeichnis

» Uberschreibt globale Einstellungen

» Projektkonventionen, Build-Anweisungen

» Beispiel: ./.claude/CLAUDE.md mit

Architekturentscheidungen

Carsten Grohmann Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Beispiele

Global (~/.claude/CLAUDE.md)

Global Developer Settings

Generic Rules
- Comments describe "why", not "how"
- Display line numbers when quoting code

Code Style

- English for all code, comments, documentation
- Clean, readable code with meaningful names

- Follow DRY principle

Git

~ ASCII only, 50 char subject, 72 char body lines
- Explain what and why (not how)

Carsten G

Mein

es Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Projektspezifisch - ./.claude/CLAUDE.md fiir OOMAnalyser

O0MAnalyser - Project Guide for Claude Code

Project Overview
Web-based tool analyzing Linux kernel 00M messages

Technology Stack
- Python 3.7+ / Tramscrypt 3.7 / Rollup

Transcrypt Compatibility

- Code runs in Python AND JavaScript

- Avoid: exec, eval, try/except

- Use DOM mock classes for browser API testing

Commits
- Run “make black™ and all tests before commit

Carsten G

Mein

es Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

Konfiguration

Nutzen:

» Global: Konsistenter Code-Stil projektiibergreifend

» Projektspezifische: Claude kennt Architektur, Build-Prozess,
Besonderheiten

> Wiederverwendbare Anweisungen reduzieren manuelle
Erklarungen

Carsten Grohmann Mein neues Werkzeug: Claude Code

Best Practices und Sicherheit

Sich
Lizenz und Urhebe

Best Practices und Sicherheit

Carsten Grohmann Mein neues Werkzeug: Claude Code

Effektive Modus-Nutzun,
Kon Management: V

P npt—Opt\m}(rur
Li

Best Practices und Sicherheit

Lizenz und Urheberre

Effektive Modus-Nutzung

Ask-Modus:

» Fiir schnelle Analysen und Verstandnisfragen nutzen
» Keine Code-Anderungen, nur Informationen sammeln
» Ideal beim Onboarding in fremde Codebases

Plan-Modus:

» Bei >3 Dateien: Immer planen lassen
» Unklare Anforderungen: Planen + Riickfragen
» Kritische Anderungen: Plan priifen, dann implementieren

Carsten Grohmann Mein neues Werkzeug: Claude Code

Effektive Modus-Nutzung
Kon \"

N X . Prompt-Opti
Best Practices und Sicherheit Lim

heimnissen
ieb
Lizenz und Urheberrecht

Automatic-Modus:

» Nur bei klaren, testbaren Aufgaben nutzen
» Test-Suite muss vorhanden sein
» Claude stoppt automatisch bei Unsicherheiten

Carsten Grohmann Mein neues Werkzeug: Claude Code

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr

N X . Prompt-Optimierun
Best Practices und Sicherheit

Lizenz und Urheberrec

Kontext-Management: Weniger ist mehr

Kernproblem:

» Voller Kontext (200k Token) — reduzierte Qualitat
» Fokussierter Kontext — prazisere Antworten
P Irrelevanter Kontext verschlechtert Ausgabequalitat

Strategien:

» Kurze Sessions, /clear bei Themenwechsel

» Verwandte Fragen gebiindelt stellen (nicht sequenziell)
» GroBe Projekte thematisch aufteilen

» Nur relevante Dateien einbeziehen

Carsten Grohmann Mein neues Werkzeug: Claude Code

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimi g: Die Kl als ta-Berater
Limit-Management: Bud nutzen

Best Practices und Sicherheit
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

> [context
L

Context Usage

claude nnet-4-5-

r

0250929 - 167k/2080k tokens (84%)

System prompt: 2.9k tokens
System tool: 14.8k tokens
MCP tools:
Memory files: 272 toke:
o i Messages: 103.7k tok
-] o Free space: 33k (1

4%)

Autocompact buffer: 45.8k tokens (22.5%)

]
]
]
]
]
]
]
]

|

MCP tools - /mcp
mcp__ide__getDiagnostics: 568 tokens

Memory files - /memory
L ~/.claude/CLAUDE.md: 27

Skills and slash commands

Carsten Grohmann

2026-01-07

Mein neues Werkzeug: Claude Code
L_Best Practices und Sicherheit
LKontext—Management: Weniger ist mehr

= Weniger Kontext — bessere Ergebnisse
= Modell arbeitet praziser mit fokussiertem Kontext
= voller Kontext verschlechtern die Ausgabequalitat

Smart Prompting:

= Spezifitat: “Optimiere N+1 Queries in user_service.py” statt
“Verbessere Performance”

= Prompt-Bausteine: Tests erwahnen, Vollstandigkeit fordern,
Ursachenanalyse statt Symptombehandlung

= Top-Down bei Komplexitat: Beschreiben — Struktur — Review —
Ausarbeiten — Final Review

» Fortgeschritten: Referenzpersénlichkeiten nutzen (“Reviewe diese
Anderung wie Linus Torvalds es tun wiirde, mit Fokus auf langfristige
Wartbarkeit.")

Effektive Modus-Nutzung
Kontext-Management niger ist mehr

. N . Prompt-Optimierung: Die Kl als Meta-Berater
Best Practices und Sicherheit _ .

g imnissen
heit: Sandbox-Betrieb
Lizenz und Urheberrecht

Prompt-Optimierung: Die Kl als Meta-Berater

Prompt-Verbesserung: Claude den Prompt selbst analysieren
lassen

Analyze this prompt intended for an AI coding assistant:

wun

[DEIN PROMPT]

Rate 1-5 (with justification):

- Clarity: Is the goal obvious?

- Specificity: Are requirements concrete?
- Completeness: Is context sufficient?

- Grammar: Any language issues?

Provide:

1. Top 3 issues preventing effectiveness

2. Improved rewrite addressing those issues
3. One key insight about what makes it better

Mein

Carsten G es Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
| Best Practices und Sicherheit
LPrompt—Optimierung: Die Kl als Meta-Berater
LPrompt—Optimierung: Die Kl als Meta-Berater

= Prompt-Analyse durch Claude selbst

= Wann: Komplexe Refactorings, unbefriedigende Ergebnisse, vor
zeitaufwandigen Operationen

= Nutzen: Verhindert Missverstandnisse, reduziert Token-Verbrauch,
identifiziert Prompt-Schwachen

Effek Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die Kl Meta-Berater

Best Practices und Sicherheit Limit-Management: Budget clever nutzen

Sicherheit: Um mit Geheimnissen
Sicherheit: Sar rieb
Lizenz und Urheberrec

Limit-Management: Budget clever nutzen

Sitzungslimit (5-Stunden-Fenster):

» Komplexe Aufgaben zuerst (volles Budget)
» Einfache Fixes spater
» Bei Warnung: Kritisches abschlieBen, dann pausieren

Wochenlimit (praktisch 10-20h):

» Stapelverarbeitung: Ahnliche Aufgaben biindeln
» Parallele Tool-Calls nutzen
» GroBe Refactorings sorgfaltig planen (vermeidet Neuanlaufe)

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L_Best Practices und Sicherheit
Limit-Management: Budget clever nutzen
Limit-Management: Budget clever nutzen

= Limits: Oft knapper als offizielle Angaben
= Strategische Session-Planung erforderlich
= Neuanlaufe verdoppeln Token-Verbrauch

Prompt-Optim

Best Practices und Sicherheit .

gang mit
Sicherheit: Sandbox
Lizenz und Urheberrecht

Sicherheit: Umgang mit Geheimnissen

Risiko: Dateniibertragung in die Cloud

» Code und Dateien werden an Anthropic-Server iibertragen
» Daten standardméaBig fiir Training verwendet (opt-out maglich)
» Gilt auch fiir .env-Dateien, Konfigurationen, Commit-Historie

Best Practices:

» Keine Credentials in Code committen

> _gitignore konsequent nutzen (.env, credentials.json, etc.)
» Umgebungsvariablen oder Secret-Manager verwenden

» Vor Verwendung: Projektverzeichnis auf Geheimnisse priifen

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
| Best Practices und Sicherheit e i
LSicherheit: Umgang mit Geheimnissen

L Sicherheit: Umgang mit Geheimnissen

Alle gelesenen Dateien werden in die Cloud Gbertragen

= Claude Pro: StandardmaBig fiirs Training verwendet, opt-out moglich
Claude for Work/Enterprise: Nicht fiirs Training verwendet

= Besonders kritisch: API-Keys, Passworter, Tokens, private Keys

Best Practices und Sicherheit

g

Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Sicherheit: Sandbox-Betrieb

Sicherheitsrisiko:

» Claude Code lauft mit vollen Nutzerrechten
» Kann Shell-Befehle ausfiihren (rm -rf, destruktive
Make-Targets)

» Zugriff auf gesamtes Home-Verzeichnis

Carsten Grohmann Mein neues Werkzeug: Claude Code

Effektive Modus-Nutzung
Management

. . . pt-Optimierur
Best Practices und Sicherheit

Sichérheit: Sandbox-Betrieb

Lizenz und Urheberrecht

Absicherungsmoglichkeiten unter Linux:

Tool Isolationsebene Komplexitat

Bubblewrap Projektverzeichnis Mittel
Firejail Vordefinierte Profile Niedrig
Docker Container Hoch

Bubblewrap-Beispiel:

burap \
--ro-bind /usr /usr --ro-bind /lib /lib \
--bind "$HOME/.claude" "$HOME/.claude" \
--bind "$(pwd)" "$(pwd)" \
--chdir "$(pwd)" --unshare-all --share-net \
claude

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
LBest Practices und Sicherheit
L Sicherheit: Sandbox-Betrieb

= Claude Code lauft mit vollen Nutzerrechten
= Git-basiertes Arbeiten: Pflicht
= Sandboxing (Bubblewrap/Firejail): Empfohlen

Best Practices und Sicherheit

Sicherheit: Sar
Lizenz und Urheberrecht

Lizenz und Urheberrecht

Kernfrage: Wem gehort der von Claude Code generierte Code?
Antwort: Der Code gehort dem Nutzer

Rechtliche Grundlage:

Fiir Claude Free, Pro, Max: Consumer Terms of Servicel:

“Vorbehaltlich lhrer Einhaltung unserer Bedingungen ibertragen wir
Ihnen alle unsere Rechte, Titel und Anspriiche (falls vorhanden) an
Outputs.”

Training: Daten werden standardméaBig genutzt, opt-out moglich

https://www.anthropic.com/legal /consumer-terms

Carsten Grohmann Mein neues Werkzeug: Claude Code

https://www.anthropic.com/legal/consumer-terms

2026-01-07

Mein neues Werkzeug: Claude Code
L_Best Practices und Sicherheit
L Lizenz und Urheberrecht
L Lizenz und Urheberrecht

= Consumer Terms gelten fiir Claude Pro (nicht Commercial Terms fir
Business-Plane)

= Englischer Originaltext: “Subject to your compliance with our Terms,
we assign to you all of our right, title, and interest—if any—in
Outputs.”

= Business-Kunden (Claude for Work/Enterprise/API) vom Training
ausgenommen

= Code unter Projektlizenz veréffentlichbar (MIT, GPL, etc.)

= Claude Code = Werkzeug (wie IDE, Compiler)

https://www.anthropic.com/legal/consumer-terms

Umfang des Testproj
Demo 1: R Optimieru infach, schnell)

» Pytest Migration (mittelsch
: Dictionary-Refactoring mit Fr

Demo 4: Backtracking Sudoku /e

X : Unittest
Live-Demos

Live-Demos

Carsten Grohmann

ell)

telschwer)

Live-Demos

Live-Demos

Demonstration des kompletten Zyklus:

Aufgabe -+ Codebase-Analyse - Plan erstellen -
Implementierung - Tests ausfiihren -+ Fehleranalyse -
Korrektur -+ Erneute Tests

Carsten Grohmann Mein neues Werkzeug: Claude Code

Umfang des Testprojekts
Demo 1: g ier ch, schnell)
Demo 2: Unittest on (mittelschwer)

Live-Demos Demo 3: Di
Demo 4: Back

gen

Umfang des Testprojekts

Zweck Anzahl der Zeilen

1 Datei Python-Sourcecode 6,3k
1 Datei HTML-Sourcecode 1,8k
1 Datei Python-Unittests 1,6k

1 Datei Makefile 140
1 Datei MIT-Lizenz 40
Sonstiges 269

Carsten Grohmann Mein neues Werkzeug: Claude Code

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2 a

Demo 3:

Live-Demos

Demo 1: Regex-Optimierung (einfach, schnell)

» Themen: Codeanalyse, Fehleridentifikation, iteratives Fixen
» Dauer: 5-8 min

» Auto-Accept Mode: aus

» Vorteil: Klarer Vorher-/Nachher-Vergleich

Prompt
Separate optional leading whitespace handling from PID capture group in the REC_PROCESS_LINE

regular expression in OOMAnalyser.py to ensure only numeric digits are captured in the pid
group.

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L Live-Demos
L—Demo 1: Regex-Optimierung (einfach, schnell)

L Demo 1: Regex-Optimierung (einfach, schnell)

©-Syntax (Datei-Referenzen):

= @datei.py - Ganze Datei laden (hoher Token-Verbrauch)

= Qdatei.py:42 - Nur Zeile 42

= Qdatei.py:10-20 - Zeilen 10 bis 20 (optimal fiir prazise Aufgaben)
= Q@verzeichnis/ - Verzeichnis-Listing

Bash-Kommandos:

= | git status - Shell-Kommando direkt ausfiihren
= Qutput wird in Session integriert

Wichtigste /-Kommandos:

= /usage - Aktuellen Tokenverbrauch und -limits anzeigen
= /context - Kontext-Nutzung visualisieren
= /clear - Konversation I6schen

Umfan projekts
Demo ptimierung (einfach, schnell)
Demo 2: Unittest — Pytes

Live-Demos Demo 3: Di -Refactc

Demo 4: Back

Demo 2: Unittest — Pytest Migration (mittelschwer)

» Themen: Strukturelles Refactoring, Planung, Durchfiihrung
» Dauer: 45-60 min

> Auto-Accept Mode: ein

» Vorteil: Demonstriert planbasierte autonome Entwicklung
» Zwischenschritte sichern mit git commit --amend

Carsten Grohmann Mein neues Werkzeug: Claude Code

Umfang des Testproj
Demo 1: Regex-Optimierung (einfach, schnell)
Unittest — Pytest Migration (mittelschwer)

Live-Demos o 3: Dictionary-Refactoring mit Fra

Demo

Prompt

Create a detailed migration plan to change unit tests from Python's unittest module to
pytest in Qtest.py.

Requirements:
- Break the migration into phases (setup, assertions, fixtures, etc.)
- Ensure all tests run successfully after each phase
- Document the plan in .claude/plans/pytest.md with:
- Phase descriptions and tasks
- Success criteria for each phase
- Timestamp tracking
- After creating the plan, execute each phase incrementally with my approval
- Ask me questions if you need clarification on scope or approach

Goal: Complete migration with no unittest dependencies remaining, using pytest fixtures
and parametrization where appropriate.

Carsten Grohmann Mein neues Werkzeug: Claude Code

Um s Testprojekts

Demo 1: R

Demo 2: U V
Demo 3: Dictionary-Refactori
Demo 4: Backtracking Sudoku Sol

Live-Demos

Demo 3: Dictionary-Refactoring mit Fragen

» Themen: Interaktive Starke, Multiple-Choice-Dialoge
» Dauer: 10-15 min
> Auto-Accept Mode: ein

Carsten Grohmann Mein neues Werkzeug: Claude Code

Live-Demos

Umfang des Testprojekts

Demo 1: R Optimierung (einfach, schnell)
Demo 2: Unittest — Pytest Migration (mittelsch
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Prompt:

Create a todo list to consolidate browser test configuration variables in test.py.

Current structure (test.py:146-178 in BaseInBrowserTests):

python

check_results_gfp_mask: str = ""
check_results_proc_name: str = ""
check_results_proc_pid: str = ""

... ~15 more individual class variables

Target structure:

© T “python
check_results: Dict[str, str] = {
'gfp_mask': '',
'proc_name': '',
'proc_pid': '',
... consolidated into single dict

Carsten Grohmann

Umfang des Testproj
Demo 1: R Optimierung (einfach, schnell)

no 2: Unittest — Pytest Migration (mittelsch
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Live-Demos

Prompt (Fortsetzung):

Requirements:

Identify all check_results_* class variables in BaseInBrowserTests

Only modify variables with string values

- Design the new dictionary structure with appropriate keys

- Update the check_all_results() method (test.py:188-324) to use dict lookups instead of
direct attribute access

- Update child classes (TestBrowserArchLinux, etc.) that override these values

- Ensure all 11 tests still pass after refactoring

After creating the todo list, execute each item incrementally with my approval

Please review this understanding and ask clarifying questions if I've misinterpreted the goal.

Carsten Grohmann

Live-Demos

Demo 4: Backtracking Sudoku Solver

Demo 4: Backtracking Sudoku Solver

» Themen: Gemeinsames Entwickeln eines Sudoku Solvers in
Python
» Dauer: Variable

Carsten Grohmann Mein neues Werkzeug: Claude Code

Praxiserfahrungen

Praxiserfahrungen

Carsten Grohmann Mein neues Werkzeug: Claude Code

Was funktioniert gut
Einschrankungen
Zeita and im Plan-Modus

Praxiserfahrungen

Was funktioniert gut

» Strukturelles Refactoring mit klarem Ziel
P lteratives Bug-Fixing mit Tests

» Codebase-Analyse und Dokumentation
» Framework-Migrationen

Carsten Grohmann Mein neues Werkzeug: Claude Code

Was funktioniert gut
Einschrankungen
Zeitaufwand im Plan-Modus

Praxiserfahrungen

Einschrankungen

» Fehlendes Kontextwissen: Was implizit klar ist, muss Claude
explizit mitgeteilt werden (z.B. dateilibergreifende
Umbenennungen)

» Unvollstandige Testabdeckung wird nicht automatisch erkannt

» Token-Limits pro Sitzung beachten

> Maximale Kontextlange: 200k Token

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code

LPraxiserfahrungen
Einschrankungen
LEinschrénkungen

= “Claude Code ist dumm" - warum explizite Anweisungen erforderlich
sind:

— Umbenennung mehrerer Bezeichner: Jeder Bezeichner muss
explizit in allen Dateien umbenannt werden, bevor der nachste
folgt - sonst arbeitet Claude dateiweise mit inkonsistenten
Zwischenstanden

— Beispiel “Aktualisiere Agenda Zeile 28": Mensch vergleicht
intuitiv Mentipunkte mit Agenda, Claude benétigt diese Schritte
explizit

= Token-Limits in der Praxis: Bei langlaufenden Aufgaben mit 145%
“liberreizt” — Automatische Kontextkomprimierung (Compaction)
funktioniert danach nicht mehr

\WEERTTIIS
Einschrankur
Zeitaufwand im Plan-Modus

Praxiserfahrungen

Zeitaufwand im Plan-Modus

» Planung oft zeitaufwandiger als Implementierung

» Trade-off: Griindliche Planung vs. schnelles Prototyping
» Kleine Anderungen: Automatic-Modus effizienter

» Komplexe Refactorings: Planung zahlt sich aus

Carsten Grohmann Mein neues Werkzeug: Claude Code

Fazit und Ausblick

Fazit und Ausblick

Carsten Grohmann Mein neues Werkzeug: Claude Code

Fazit und Ausblick

Fazit und Ausblick

Fazit
» kann Code iiber dem eigenen Verstiandnisniveau schreiben
» Produktivitatssteigerung
» Ahnlich Pair-Programming
» Grenzen kennen, gezielt einsetzen

Ausblick
» Plugins
» Subagents
» MCP-Server: Integration externer Tools (DBs, APIs, IDEs)
» Erweiterte Automatisierung
» Bugreports automatisch analysieren, Duplikate erkennen, Fixes
schreiben und testen

Carsten Grohmann Mein neues Werkzeug: Claude Code

2026-01-07

Mein neues Werkzeug: Claude Code
L Fazit und Ausblick

L Fazit und Ausblick

= Erweiterte Workflows durch spezialisierte Subagents

= Automatisierung wiederkehrender Entwicklungsaufgaben

= Subagents: Spezialisierte Al-Assistenten fiir bestimmte
Aufgabentypen mit eigenen Kontext (spart Token im Hauptgesprach)

Fragen und Diskussion

Lizenz

Abschluss

Abschluss

Carsten Grohmann Mein neues Werkzeug: Claude Code

Fragen und Diskussion

Lizenz

Abschluss

Fragen und Diskussion

> Fragen
> Anregungen

Carsten Grohmann Mein neues Werkzeug: Claude Code

Fragen und Diskussion

Lizenz

Abschluss

Lizenz

D09

Dieses Werk ist lizenziert unter einer “Creative Commons

Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen

Bedingungen 4.0 International Lizenz"?.

2https: //creativecommons.org/licenses/by-nc-sa/4.0/deed.de

Carsten Grohmann Mein neues Werkzeug: Claude Code

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de

	Agenda
	Einführung und Grundlagen
	Warum Claude Code?
	Was ist Claude Code?
	Das Grundprinzip: Der autonome Entwicklungszyklus
	Nutzungslimits Claude Code Pro (20$/Monat)

	Arbeiten mit Claude Code
	Die drei Modi
	Konfiguration

	Best Practices und Sicherheit
	Effektive Modus-Nutzung
	Kontext-Management: Weniger ist mehr
	Prompt-Optimierung: Die KI als Meta-Berater
	Limit-Management: Budget clever nutzen
	Sicherheit: Umgang mit Geheimnissen
	Sicherheit: Sandbox-Betrieb
	Lizenz und Urheberrecht

	Live-Demos
	Umfang des Testprojekts
	Demo 1: Regex-Optimierung (einfach, schnell)
	Demo 2: Unittest → Pytest Migration (mittelschwer)
	Demo 3: Dictionary-Refactoring mit Fragen
	Demo 4: Backtracking Sudoku Solver

	Praxiserfahrungen
	Was funktioniert gut
	Einschränkungen
	Zeitaufwand im Plan-Modus

	Fazit und Ausblick
	Abschluss
	Fragen und Diskussion
	Lizenz

