
Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Mein neues Werkzeug: Claude Code
Aufgabe stellen, loslassen, Ergebnis prüfen

Carsten Grohmann

Unix-Stammtisch Dresden

7. Januar 2026

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Agenda

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Agenda

1. Einführung und Grundlagen
2. Arbeiten mit Claude Code
3. Best Practices und Sicherheit
4. Live-Demos
5. Praxiserfahrungen
6. Fazit und Ausblick
7. Abschluss

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Einführung und Grundlagen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Warum Claude Code?

▶ Autonome Problemlösung
▶ Kontextbewusstes Arbeiten
▶ Praktische Integration
▶ Transparenz und Effizienz
▶ Lernunterstützung

Carsten Grohmann Mein neues Werkzeug: Claude Code



Warum Claude Code?

▶ Autonome Problemlösung
▶ Kontextbewusstes Arbeiten
▶ Praktische Integration
▶ Transparenz und Effizienz
▶ Lernunterstützung

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Einführung und Grundlagen
Warum Claude Code?

Warum Claude Code?

• Autonome Problemlösung:
– Komplexe Aufgaben selbstständig in Schritte zerlegen
– Code schreiben, testen, debuggen und iterativ verbessern

• Kontextbewusstes Arbeiten
– Codebase durchsuchen und verstehen, Architekturmuster

erkennen
– Lösungen passend zum bestehenden Code

• Praktische Integration
– Git-Integration, Build-Systeme, Tests und Entwicklungstools
– Web-Recherche und Dokumentation

• Transparenz und Effizienz
– Jeden Schritt nachvollziehbar
– Automatisiert repetitive Aufgaben

• Lernunterstützung
– Zeigt Best Practices und alternative Ansätze
– Hilft beim Verstehen unbekannter Codebases



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Was ist Claude Code?

▶ Offizielles CLI-Tool von Anthropic für Claude AI
▶ Terminalbasiertes Entwicklungswerkzeug
▶ Direkter Zugriff auf Codebase, Dateisystem und Build-Tools
▶ Läuft mit Nutzerrechten (keine Isolierung)
▶ Verfügbar für Linux, macOS und Windows

Paradigmenwechsel:

▶ Nicht: “Generiere Code für X”
▶ Sondern: “Analysiere Codebase, plane Änderung,

implementiere, teste”

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Das Grundprinzip: Der autonome Entwicklungszyklus
Aufgabe

formulieren
Verstehen Planen

Umsetzen

Validieren

Fehler?

Ja

✓ Fertig
Nein

Wichtig: Tests und hohe Testabdeckung sind essenziell.
Carsten Grohmann Mein neues Werkzeug: Claude Code



Das Grundprinzip: Der autonome Entwicklungszyklus
Aufgabe

formulieren
Verstehen Planen

Umsetzen

Validieren

Fehler?

Ja

✓ Fertig
Nein

Wichtig: Tests und hohe Testabdeckung sind essenziell.

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Einführung und Grundlagen
Das Grundprinzip: Der autonome Entwicklungszyklus

Das Grundprinzip: Der autonome
Entwicklungszyklus

• Eigenständige Arbeit nach Aufgabenstellung
• Autonome Umsetzung bis zum getesteten Ergebnis
• Tests und Testabdeckung sind kritisch für Erfolg



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Nutzungslimits Claude Code Pro (20$/Monat)
Sitzungslimit:

▶ ~10-40 Prompts bei Claude Code (45 Nachrichten bei claude.ai)
▶ Gilt gemeinsam über alle Plattformen (Web, Desktop, Code)
▶ Ungenutzte Token verfallen nicht
▶ Reset 5 Stunden nach Session-Start

Wochenlimit:

▶ Offiziell: 40-80 Stunden Sonnet 4 pro Woche
▶ Praxis: 10-20 Stunden (ca. 2-3h pro Arbeitstag)
▶ Ungenutzte Token verfallen
▶ Stark variabel je nach Codebase-Größe und Auto-Accept Mode

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Warum Claude Code?
Was ist Claude Code?
Das Grundprinzip: Der autonome Entwicklungszyklus
Nutzungslimits Claude Code Pro (20$/Monat)

Wichtig:

▶ Fehlende Transparenz bei den Messungen
▶ Änderungen ohne Ankündigung

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Arbeiten mit Claude Code

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Die drei Modi

Drei Betriebsmodi für unterschiedliche Arbeitsweisen
▶ Ask-Modus - Gezieltes Nachfragen und Klären
▶ Plan-Modus - Strukturierte Planung vor der Implementierung
▶ Automatic-Modus - Autonome Umsetzung

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Ask-Modus: Gezieltes Nachfragen und Klären

Wofür:

▶ Verständnisfragen zur Codebase
▶ Erklärungen zu bestehendem Code
▶ Schnelle Analysen ohne Änderungen

Beispiele:
> Wo werden Fehler vom Client behandelt?
→ Claude analysiert Code und zeigt: "In src/services/process.ts:712"

> Welche regulären Ausdrücke werden in diesem Projekt verwendet?
→ Claude listet alle Regex-Patterns mit Fundstellen auf

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Typische Anwendungsfälle:

▶ Onboarding in fremde Codebases
▶ Code-Reviews verstehen
▶ Architekturentscheidungen nachvollziehen
▶ “Wie funktioniert Feature X?”

Carsten Grohmann Mein neues Werkzeug: Claude Code



Typische Anwendungsfälle:

▶ Onboarding in fremde Codebases
▶ Code-Reviews verstehen
▶ Architekturentscheidungen nachvollziehen
▶ “Wie funktioniert Feature X?”

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

• Schnelle Codebase-Analyse in Sekunden
• Präzise Antworten ohne Änderungen
• Ideal für Onboarding und Verständnisfragen



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Plan-Modus: Strukturierte Planung vor Implementierung

Wofür:

▶ Komplexe Änderungen mit mehreren Schritten
▶ Unsicherheit über beste Herangehensweise
▶ Klärung von Anforderungen vor Umsetzung

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Workflow:

1. Aufgabe beschreiben
2. Claude analysiert Codebase
3. Claude erstellt detaillierten Plan mit:

▶ Betroffene Dateien
▶ Einzelne Schritte
▶ Mögliche Risiken
▶ Alternative Ansätze

4. Plan prüfen und freigeben
5. Umsetzung starten

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Praxisbeispiel:

Plan: Unittest → Pytest Migration

Claude analysiert:

▶ test.py (1,6k Zeilen mit unittest)
▶ Makefile (Test-Targets)
▶ Dependencies in requirements.txt

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Claude schlägt vor:

1. Test-Klassen zu pytest-Funktionen konvertieren
2. setUp/tearDown durch Fixtures ersetzen
3. self.assert* durch assert ersetzen
4. Makefile anpassen
5. Dependencies aktualisieren
6. Tests ausführen und validieren

→ Freigabe → Autonome Implementierung

Carsten Grohmann Mein neues Werkzeug: Claude Code



Claude schlägt vor:

1. Test-Klassen zu pytest-Funktionen konvertieren
2. setUp/tearDown durch Fixtures ersetzen
3. self.assert* durch assert ersetzen
4. Makefile anpassen
5. Dependencies aktualisieren
6. Tests ausführen und validieren

→ Freigabe → Autonome Implementierung20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

• Wertvoll bei komplexen Refactorings
• Zeigt alle Implikationen vor Code-Änderungen
• Verhindert fehlerhafte Implementierungen durch Vorausplanung



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Automatic-Modus: Autonome Umsetzung

Wofür:

▶ Klare, gut definierte Aufgaben
▶ Änderungen mit vorhandenem Test-Suite
▶ Routine-Refactorings

Merkmale:

▶ Claude arbeitet selbstständig durch Todo-Liste
▶ Führt Tests automatisch aus
▶ Korrigiert Fehler eigenständig
▶ Stoppt bei unklaren Situationen und fragt nach

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Beispiel-Ablauf:

Prompt: Check regular expressions and suggest
improvements

Mustertext: "[ 473206] 504 473206 7572670"

Hinweis: Der RE soll die PID aus dem ersten Feld extrahieren

Claude Code:

1. Scannt REs, identifiziert: ˆ\[(?P<pid>[ \d]+)\]
2. Ändert zu ˆ\[(?P<pid>\s*\d+)\] und testet
3. Tests fehlgeschlagen
4. Analysiert Fehler, korrigiert zu \[\s*(?P<pid>\d+)\]
5. Erneute Tests erfolgreich, abgeschlossen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Beispiel-Ablauf:

Prompt: Check regular expressions and suggest
improvements

Mustertext: "[ 473206] 504 473206 7572670"

Hinweis: Der RE soll die PID aus dem ersten Feld extrahieren

Claude Code:

1. Scannt REs, identifiziert: ˆ\[(?P<pid>[ \d]+)\]
2. Ändert zu ˆ\[(?P<pid>\s*\d+)\] und testet
3. Tests fehlgeschlagen
4. Analysiert Fehler, korrigiert zu \[\s*(?P<pid>\d+)\]
5. Erneute Tests erfolgreich, abgeschlossen

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

• Beispiel für eine autonome Änderung aus einer größeren Aufgabe
• inkl. erster fehlerhafter Änderung mit anschließenden Test und

Korrektur



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Grenzen der Autonomie:

▶ Bei Unsicherheiten: Claude fragt nach (Multiple Choice Dialog)
▶ Bei fehlenden Informationen: Claude stoppt und bittet um Input
▶ Bei kritischen Operationen: Claude warnt vorher

Carsten Grohmann Mein neues Werkzeug: Claude Code



Grenzen der Autonomie:

▶ Bei Unsicherheiten: Claude fragt nach (Multiple Choice Dialog)
▶ Bei fehlenden Informationen: Claude stoppt und bittet um Input
▶ Bei kritischen Operationen: Claude warnt vorher

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Arbeiten mit Claude Code
Die drei Modi

• Kernelement: Aufgabe stellen, loslassen, Ergebnis prüfen
• Autonomie mit Kontrolle: Claude stoppt bei Unsicherheiten
• Automatische Fehlerkorrektur und Test-Validierung

Was passiert im Hintergrund:

• Read: Dateien lesen und analysieren
• Grep/Glob: Code durchsuchen
• Edit: Präzise Änderungen vornehmen
• Bash: Tests, Build-Prozesse ausführen
• TodoWrite: Fortschritt tracken



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Wann welcher Modus? - Entscheidungshilfe

Situation Modus Grund
Analyse/Erklärung Ask Keine Änderung
Großes Refactoring Plan → Auto Viele Dateien
Einfache Änderung Automatic Klar definiert
Performance Plan Mehrere Ansätze
Framework-Migration Plan → Auto Groß, strukturiert
Bugfix (mit Tests) Automatic Klein, testbar
Feature-Evaluierung Plan Diskussionsbedarf

Carsten Grohmann Mein neues Werkzeug: Claude Code



Wann welcher Modus? - Entscheidungshilfe

Situation Modus Grund
Analyse/Erklärung Ask Keine Änderung
Großes Refactoring Plan → Auto Viele Dateien
Einfache Änderung Automatic Klar definiert
Performance Plan Mehrere Ansätze
Framework-Migration Plan → Auto Groß, strukturiert
Bugfix (mit Tests) Automatic Klein, testbar
Feature-Evaluierung Plan Diskussionsbedarf20

26
-0

1-
07

Mein neues Werkzeug: Claude Code
Arbeiten mit Claude Code

Die drei Modi
Wann welcher Modus? - Entscheidungshilfe

• Modi sind kombinierbar
• Typischer Workflow: Ask → Plan → Automatic
• Modiwechsel je nach Aufgabenphase



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Konfigurationsebenen und -verzeichnisse

▶ ~/.claude/: Globale Konfiguration
▶ Gilt für alle Claude Code Sitzungen
▶ Persönliche Präferenzen, Code-Stil, Review-Standards
▶ Beispiel: ~/.claude/CLAUDE.md mit Coding-Richtlinien

▶ ./.claude/: Projektspezifische Konfiguration
▶ Nur für aktuelles Projektverzeichnis
▶ Überschreibt globale Einstellungen
▶ Projektkonventionen, Build-Anweisungen
▶ Beispiel: ./.claude/CLAUDE.md mit

Architekturentscheidungen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Beispiele

Global (~/.claude/CLAUDE.md)
# Global Developer Settings

## Generic Rules
- Comments describe "why", not "how"
- Display line numbers when quoting code

## Code Style
- English for all code, comments, documentation
- Clean, readable code with meaningful names
- Follow DRY principle

## Git
- ASCII only, 50 char subject, 72 char body lines
- Explain what and why (not how)

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Projektspezifisch - ./.claude/CLAUDE.md für OOMAnalyser
# OOMAnalyser - Project Guide for Claude Code

## Project Overview
Web-based tool analyzing Linux kernel OOM messages

## Technology Stack
- Python 3.7+ / Transcrypt 3.7 / Rollup

## Transcrypt Compatibility
- Code runs in Python AND JavaScript
- Avoid: exec, eval, try/except
- Use DOM mock classes for browser API testing

## Commits
- Run `make black` and all tests before commit

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Die drei Modi
Konfiguration

Nutzen:

▶ Global: Konsistenter Code-Stil projektübergreifend
▶ Projektspezifische: Claude kennt Architektur, Build-Prozess,

Besonderheiten
▶ Wiederverwendbare Anweisungen reduzieren manuelle

Erklärungen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Best Practices und Sicherheit

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Effektive Modus-Nutzung

Ask-Modus:

▶ Für schnelle Analysen und Verständnisfragen nutzen
▶ Keine Code-Änderungen, nur Informationen sammeln
▶ Ideal beim Onboarding in fremde Codebases

Plan-Modus:

▶ Bei >3 Dateien: Immer planen lassen
▶ Unklare Anforderungen: Planen + Rückfragen
▶ Kritische Änderungen: Plan prüfen, dann implementieren

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Automatic-Modus:

▶ Nur bei klaren, testbaren Aufgaben nutzen
▶ Test-Suite muss vorhanden sein
▶ Claude stoppt automatisch bei Unsicherheiten

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Kontext-Management: Weniger ist mehr

Kernproblem:

▶ Voller Kontext (200k Token) → reduzierte Qualität
▶ Fokussierter Kontext → präzisere Antworten
▶ Irrelevanter Kontext verschlechtert Ausgabequalität

Strategien:

▶ Kurze Sessions, /clear bei Themenwechsel
▶ Verwandte Fragen gebündelt stellen (nicht sequenziell)
▶ Große Projekte thematisch aufteilen
▶ Nur relevante Dateien einbeziehen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Carsten Grohmann Mein neues Werkzeug: Claude Code



20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Best Practices und Sicherheit
Kontext-Management: Weniger ist mehr

• Weniger Kontext → bessere Ergebnisse
• Modell arbeitet präziser mit fokussiertem Kontext
• voller Kontext verschlechtern die Ausgabequalität

Smart Prompting:

• Spezifität: “Optimiere N+1 Queries in user_service.py” statt
“Verbessere Performance”

• Prompt-Bausteine: Tests erwähnen, Vollständigkeit fordern,
Ursachenanalyse statt Symptombehandlung

• Top-Down bei Komplexität: Beschreiben → Struktur → Review →
Ausarbeiten → Final Review

• Fortgeschritten: Referenzpersönlichkeiten nutzen (“Reviewe diese
Änderung wie Linus Torvalds es tun würde, mit Fokus auf langfristige
Wartbarkeit.”)



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Prompt-Optimierung: Die KI als Meta-Berater

Prompt-Verbesserung: Claude den Prompt selbst analysieren
lassen
Analyze this prompt intended for an AI coding assistant:

"""
[DEIN PROMPT]
"""

Rate 1-5 (with justification):
- Clarity: Is the goal obvious?
- Specificity: Are requirements concrete?
- Completeness: Is context sufficient?
- Grammar: Any language issues?

Provide:
1. Top 3 issues preventing effectiveness
2. Improved rewrite addressing those issues
3. One key insight about what makes it better

Carsten Grohmann Mein neues Werkzeug: Claude Code



Prompt-Optimierung: Die KI als Meta-Berater

Prompt-Verbesserung: Claude den Prompt selbst analysieren
lassen
Analyze this prompt intended for an AI coding assistant:

"""
[DEIN PROMPT]
"""

Rate 1-5 (with justification):
- Clarity: Is the goal obvious?
- Specificity: Are requirements concrete?
- Completeness: Is context sufficient?
- Grammar: Any language issues?

Provide:
1. Top 3 issues preventing effectiveness
2. Improved rewrite addressing those issues
3. One key insight about what makes it better

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Best Practices und Sicherheit
Prompt-Optimierung: Die KI als Meta-Berater

Prompt-Optimierung: Die KI als Meta-Berater

• Prompt-Analyse durch Claude selbst
• Wann: Komplexe Refactorings, unbefriedigende Ergebnisse, vor

zeitaufwändigen Operationen
• Nutzen: Verhindert Missverständnisse, reduziert Token-Verbrauch,

identifiziert Prompt-Schwächen



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Limit-Management: Budget clever nutzen

Sitzungslimit (5-Stunden-Fenster):

▶ Komplexe Aufgaben zuerst (volles Budget)
▶ Einfache Fixes später
▶ Bei Warnung: Kritisches abschließen, dann pausieren

Wochenlimit (praktisch 10-20h):

▶ Stapelverarbeitung: Ähnliche Aufgaben bündeln
▶ Parallele Tool-Calls nutzen
▶ Große Refactorings sorgfältig planen (vermeidet Neuanläufe)

Carsten Grohmann Mein neues Werkzeug: Claude Code



Limit-Management: Budget clever nutzen

Sitzungslimit (5-Stunden-Fenster):

▶ Komplexe Aufgaben zuerst (volles Budget)
▶ Einfache Fixes später
▶ Bei Warnung: Kritisches abschließen, dann pausieren

Wochenlimit (praktisch 10-20h):

▶ Stapelverarbeitung: Ähnliche Aufgaben bündeln
▶ Parallele Tool-Calls nutzen
▶ Große Refactorings sorgfältig planen (vermeidet Neuanläufe)20

26
-0

1-
07

Mein neues Werkzeug: Claude Code
Best Practices und Sicherheit

Limit-Management: Budget clever nutzen
Limit-Management: Budget clever nutzen

• Limits: Oft knapper als offizielle Angaben
• Strategische Session-Planung erforderlich
• Neuanläufe verdoppeln Token-Verbrauch



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Sicherheit: Umgang mit Geheimnissen

Risiko: Datenübertragung in die Cloud

▶ Code und Dateien werden an Anthropic-Server übertragen
▶ Daten standardmäßig für Training verwendet (opt-out möglich)
▶ Gilt auch für .env-Dateien, Konfigurationen, Commit-Historie

Best Practices:

▶ Keine Credentials in Code committen
▶ .gitignore konsequent nutzen (.env, credentials.json, etc.)
▶ Umgebungsvariablen oder Secret-Manager verwenden
▶ Vor Verwendung: Projektverzeichnis auf Geheimnisse prüfen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Sicherheit: Umgang mit Geheimnissen

Risiko: Datenübertragung in die Cloud

▶ Code und Dateien werden an Anthropic-Server übertragen
▶ Daten standardmäßig für Training verwendet (opt-out möglich)
▶ Gilt auch für .env-Dateien, Konfigurationen, Commit-Historie

Best Practices:

▶ Keine Credentials in Code committen
▶ .gitignore konsequent nutzen (.env, credentials.json, etc.)
▶ Umgebungsvariablen oder Secret-Manager verwenden
▶ Vor Verwendung: Projektverzeichnis auf Geheimnisse prüfen

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Best Practices und Sicherheit
Sicherheit: Umgang mit Geheimnissen

Sicherheit: Umgang mit Geheimnissen

• Alle gelesenen Dateien werden in die Cloud übertragen
• Claude Pro: Standardmäßig fürs Training verwendet, opt-out möglich
• Claude for Work/Enterprise: Nicht fürs Training verwendet
• Besonders kritisch: API-Keys, Passwörter, Tokens, private Keys



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Sicherheit: Sandbox-Betrieb

Sicherheitsrisiko:

▶ Claude Code läuft mit vollen Nutzerrechten
▶ Kann Shell-Befehle ausführen (rm -rf, destruktive

Make-Targets)
▶ Zugriff auf gesamtes Home-Verzeichnis

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Absicherungsmöglichkeiten unter Linux:

Tool Isolationsebene Komplexität
Bubblewrap Projektverzeichnis Mittel
Firejail Vordefinierte Profile Niedrig
Docker Container Hoch

Bubblewrap-Beispiel:
bwrap \

--ro-bind /usr /usr --ro-bind /lib /lib \
--bind "$HOME/.claude" "$HOME/.claude" \
--bind "$(pwd)" "$(pwd)" \
--chdir "$(pwd)" --unshare-all --share-net \
claude

Carsten Grohmann Mein neues Werkzeug: Claude Code



Absicherungsmöglichkeiten unter Linux:

Tool Isolationsebene Komplexität
Bubblewrap Projektverzeichnis Mittel
Firejail Vordefinierte Profile Niedrig
Docker Container Hoch

Bubblewrap-Beispiel:
bwrap \

--ro-bind /usr /usr --ro-bind /lib /lib \
--bind "$HOME/.claude" "$HOME/.claude" \
--bind "$(pwd)" "$(pwd)" \
--chdir "$(pwd)" --unshare-all --share-net \
claude

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Best Practices und Sicherheit
Sicherheit: Sandbox-Betrieb

• Claude Code läuft mit vollen Nutzerrechten
• Git-basiertes Arbeiten: Pflicht
• Sandboxing (Bubblewrap/Firejail): Empfohlen



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Effektive Modus-Nutzung
Kontext-Management: Weniger ist mehr
Prompt-Optimierung: Die KI als Meta-Berater
Limit-Management: Budget clever nutzen
Sicherheit: Umgang mit Geheimnissen
Sicherheit: Sandbox-Betrieb
Lizenz und Urheberrecht

Lizenz und Urheberrecht
Kernfrage: Wem gehört der von Claude Code generierte Code?

Antwort: Der Code gehört dem Nutzer

Rechtliche Grundlage:

Für Claude Free, Pro, Max: Consumer Terms of Service1:

“Vorbehaltlich Ihrer Einhaltung unserer Bedingungen übertragen wir
Ihnen alle unsere Rechte, Titel und Ansprüche (falls vorhanden) an
Outputs.”

Training: Daten werden standardmäßig genutzt, opt-out möglich

1https://www.anthropic.com/legal/consumer-terms
Carsten Grohmann Mein neues Werkzeug: Claude Code

https://www.anthropic.com/legal/consumer-terms


Lizenz und Urheberrecht
Kernfrage: Wem gehört der von Claude Code generierte Code?

Antwort: Der Code gehört dem Nutzer

Rechtliche Grundlage:

Für Claude Free, Pro, Max: Consumer Terms of Service1:

“Vorbehaltlich Ihrer Einhaltung unserer Bedingungen übertragen wir
Ihnen alle unsere Rechte, Titel und Ansprüche (falls vorhanden) an
Outputs.”

Training: Daten werden standardmäßig genutzt, opt-out möglich

1https://www.anthropic.com/legal/consumer-terms

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Best Practices und Sicherheit
Lizenz und Urheberrecht

Lizenz und Urheberrecht

• Consumer Terms gelten für Claude Pro (nicht Commercial Terms für
Business-Pläne)

• Englischer Originaltext: “Subject to your compliance with our Terms,
we assign to you all of our right, title, and interest—if any—in
Outputs.”

• Business-Kunden (Claude for Work/Enterprise/API) vom Training
ausgenommen

• Code unter Projektlizenz veröffentlichbar (MIT, GPL, etc.)
• Claude Code = Werkzeug (wie IDE, Compiler)

https://www.anthropic.com/legal/consumer-terms


Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Live-Demos

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Live-Demos

Demonstration des kompletten Zyklus:

Aufgabe → Codebase-Analyse → Plan erstellen →
Implementierung → Tests ausführen → Fehleranalyse →
Korrektur → Erneute Tests

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Umfang des Testprojekts

Zweck Anzahl der Zeilen
1 Datei Python-Sourcecode 6,3k
1 Datei HTML-Sourcecode 1,8k
1 Datei Python-Unittests 1,6k
1 Datei Makefile 140
1 Datei MIT-Lizenz 40
Sonstiges 269

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Demo 1: Regex-Optimierung (einfach, schnell)

▶ Themen: Codeanalyse, Fehleridentifikation, iteratives Fixen
▶ Dauer: 5-8 min
▶ Auto-Accept Mode: aus
▶ Vorteil: Klarer Vorher-/Nachher-Vergleich

Prompt
Separate optional leading whitespace handling from PID capture group in the REC_PROCESS_LINE
regular expression in OOMAnalyser.py to ensure only numeric digits are captured in the pid
group.

Carsten Grohmann Mein neues Werkzeug: Claude Code



Demo 1: Regex-Optimierung (einfach, schnell)

▶ Themen: Codeanalyse, Fehleridentifikation, iteratives Fixen
▶ Dauer: 5-8 min
▶ Auto-Accept Mode: aus
▶ Vorteil: Klarer Vorher-/Nachher-Vergleich

Prompt
Separate optional leading whitespace handling from PID capture group in the REC_PROCESS_LINE
regular expression in OOMAnalyser.py to ensure only numeric digits are captured in the pid
group.20

26
-0

1-
07

Mein neues Werkzeug: Claude Code
Live-Demos

Demo 1: Regex-Optimierung (einfach, schnell)
Demo 1: Regex-Optimierung (einfach, schnell)

@-Syntax (Datei-Referenzen):

• @datei.py - Ganze Datei laden (hoher Token-Verbrauch)
• @datei.py:42 - Nur Zeile 42
• @datei.py:10-20 - Zeilen 10 bis 20 (optimal für präzise Aufgaben)
• @verzeichnis/ - Verzeichnis-Listing

Bash-Kommandos:

• ! git status - Shell-Kommando direkt ausführen
• Output wird in Session integriert

Wichtigste /-Kommandos:

• /usage - Aktuellen Tokenverbrauch und -limits anzeigen
• /context - Kontext-Nutzung visualisieren
• /clear - Konversation löschen



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Demo 2: Unittest → Pytest Migration (mittelschwer)

▶ Themen: Strukturelles Refactoring, Planung, Durchführung
▶ Dauer: 45-60 min
▶ Auto-Accept Mode: ein
▶ Vorteil: Demonstriert planbasierte autonome Entwicklung
▶ Zwischenschritte sichern mit git commit --amend

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Prompt
Create a detailed migration plan to change unit tests from Python's unittest module to
pytest in @test.py.

Requirements:
- Break the migration into phases (setup, assertions, fixtures, etc.)
- Ensure all tests run successfully after each phase
- Document the plan in .claude/plans/pytest.md with:

- Phase descriptions and tasks
- Success criteria for each phase
- Timestamp tracking

- After creating the plan, execute each phase incrementally with my approval
- Ask me questions if you need clarification on scope or approach

Goal: Complete migration with no unittest dependencies remaining, using pytest fixtures
and parametrization where appropriate.

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Demo 3: Dictionary-Refactoring mit Fragen

▶ Themen: Interaktive Stärke, Multiple-Choice-Dialoge
▶ Dauer: 10-15 min
▶ Auto-Accept Mode: ein

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Prompt:
Create a todo list to consolidate browser test configuration variables in test.py.

Current structure (test.py:146-178 in BaseInBrowserTests):
```python
check_results_gfp_mask: str = ""
check_results_proc_name: str = ""
check_results_proc_pid: str = ""
# ... ~15 more individual class variables
```

Target structure:
```python
check_results: Dict[str, str] = {

'gfp_mask': '',
'proc_name': '',
'proc_pid': '',
# ... consolidated into single dict

}
```

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Prompt (Fortsetzung):
Requirements:
- Identify all check_results_* class variables in BaseInBrowserTests
- Only modify variables with string values
- Design the new dictionary structure with appropriate keys
- Update the check_all_results() method (test.py:188-324) to use dict lookups instead of

direct attribute access
- Update child classes (TestBrowserArchLinux, etc.) that override these values
- Ensure all 11 tests still pass after refactoring
- After creating the todo list, execute each item incrementally with my approval

Please review this understanding and ask clarifying questions if I've misinterpreted the goal.

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Umfang des Testprojekts
Demo 1: Regex-Optimierung (einfach, schnell)
Demo 2: Unittest → Pytest Migration (mittelschwer)
Demo 3: Dictionary-Refactoring mit Fragen
Demo 4: Backtracking Sudoku Solver

Demo 4: Backtracking Sudoku Solver

▶ Themen: Gemeinsames Entwickeln eines Sudoku Solvers in
Python

▶ Dauer: Variable

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Was funktioniert gut
Einschränkungen
Zeitaufwand im Plan-Modus

Praxiserfahrungen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Was funktioniert gut
Einschränkungen
Zeitaufwand im Plan-Modus

Was funktioniert gut

▶ Strukturelles Refactoring mit klarem Ziel
▶ Iteratives Bug-Fixing mit Tests
▶ Codebase-Analyse und Dokumentation
▶ Framework-Migrationen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Was funktioniert gut
Einschränkungen
Zeitaufwand im Plan-Modus

Einschränkungen

▶ Fehlendes Kontextwissen: Was implizit klar ist, muss Claude
explizit mitgeteilt werden (z.B. dateiübergreifende
Umbenennungen)

▶ Unvollständige Testabdeckung wird nicht automatisch erkannt
▶ Token-Limits pro Sitzung beachten
▶ Maximale Kontextlänge: 200k Token

Carsten Grohmann Mein neues Werkzeug: Claude Code



Einschränkungen

▶ Fehlendes Kontextwissen: Was implizit klar ist, muss Claude
explizit mitgeteilt werden (z.B. dateiübergreifende
Umbenennungen)

▶ Unvollständige Testabdeckung wird nicht automatisch erkannt
▶ Token-Limits pro Sitzung beachten
▶ Maximale Kontextlänge: 200k Token

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Praxiserfahrungen
Einschränkungen

Einschränkungen

• “Claude Code ist dumm” - warum explizite Anweisungen erforderlich
sind:

– Umbenennung mehrerer Bezeichner: Jeder Bezeichner muss
explizit in allen Dateien umbenannt werden, bevor der nächste
folgt - sonst arbeitet Claude dateiweise mit inkonsistenten
Zwischenständen

– Beispiel “Aktualisiere Agenda Zeile 28”: Mensch vergleicht
intuitiv Menüpunkte mit Agenda, Claude benötigt diese Schritte
explizit

• Token-Limits in der Praxis: Bei langlaufenden Aufgaben mit 145%
“überreizt” → Automatische Kontextkomprimierung (Compaction)
funktioniert danach nicht mehr



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Was funktioniert gut
Einschränkungen
Zeitaufwand im Plan-Modus

Zeitaufwand im Plan-Modus

▶ Planung oft zeitaufwändiger als Implementierung
▶ Trade-off: Gründliche Planung vs. schnelles Prototyping
▶ Kleine Änderungen: Automatic-Modus effizienter
▶ Komplexe Refactorings: Planung zahlt sich aus

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Fazit und Ausblick

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Fazit und Ausblick
Fazit
▶ kann Code über dem eigenen Verständnisniveau schreiben
▶ Produktivitätssteigerung
▶ Ähnlich Pair-Programming
▶ Grenzen kennen, gezielt einsetzen

Ausblick
▶ Plugins
▶ Subagents
▶ MCP-Server: Integration externer Tools (DBs, APIs, IDEs)
▶ Erweiterte Automatisierung

▶ Bugreports automatisch analysieren, Duplikate erkennen, Fixes
schreiben und testen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Fazit und Ausblick
Fazit
▶ kann Code über dem eigenen Verständnisniveau schreiben
▶ Produktivitätssteigerung
▶ Ähnlich Pair-Programming
▶ Grenzen kennen, gezielt einsetzen

Ausblick
▶ Plugins
▶ Subagents
▶ MCP-Server: Integration externer Tools (DBs, APIs, IDEs)
▶ Erweiterte Automatisierung

▶ Bugreports automatisch analysieren, Duplikate erkennen, Fixes
schreiben und testen

20
26

-0
1-

07
Mein neues Werkzeug: Claude Code

Fazit und Ausblick

Fazit und Ausblick

• Erweiterte Workflows durch spezialisierte Subagents
• Automatisierung wiederkehrender Entwicklungsaufgaben
• Subagents: Spezialisierte AI-Assistenten für bestimmte

Aufgabentypen mit eigenen Kontext (spart Token im Hauptgespräch)



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Fragen und Diskussion
Lizenz

Abschluss

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Fragen und Diskussion
Lizenz

Fragen und Diskussion

▶ Fragen
▶ Anregungen

Carsten Grohmann Mein neues Werkzeug: Claude Code



Agenda
Einführung und Grundlagen

Arbeiten mit Claude Code
Best Practices und Sicherheit

Live-Demos
Praxiserfahrungen

Fazit und Ausblick
Abschluss

Fragen und Diskussion
Lizenz

Lizenz

Dieses Werk ist lizenziert unter einer “Creative Commons
Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen
Bedingungen 4.0 International Lizenz”2.

2https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de
Carsten Grohmann Mein neues Werkzeug: Claude Code

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de

	Agenda
	Einführung und Grundlagen
	Warum Claude Code?
	Was ist Claude Code?
	Das Grundprinzip: Der autonome Entwicklungszyklus
	Nutzungslimits Claude Code Pro (20$/Monat)

	Arbeiten mit Claude Code
	Die drei Modi
	Konfiguration

	Best Practices und Sicherheit
	Effektive Modus-Nutzung
	Kontext-Management: Weniger ist mehr
	Prompt-Optimierung: Die KI als Meta-Berater
	Limit-Management: Budget clever nutzen
	Sicherheit: Umgang mit Geheimnissen
	Sicherheit: Sandbox-Betrieb
	Lizenz und Urheberrecht

	Live-Demos
	Umfang des Testprojekts
	Demo 1: Regex-Optimierung (einfach, schnell)
	Demo 2: Unittest → Pytest Migration (mittelschwer)
	Demo 3: Dictionary-Refactoring mit Fragen
	Demo 4: Backtracking Sudoku Solver

	Praxiserfahrungen
	Was funktioniert gut
	Einschränkungen
	Zeitaufwand im Plan-Modus

	Fazit und Ausblick
	Abschluss
	Fragen und Diskussion
	Lizenz


